
KAmod ESP32 ETH POE (PL)

Rev. 20260127092338
Źródło: https://wiki.kamamilabs.com/index.php?title=KAmod_ESP32_ETH_POE_(PL)

https://wiki.kamamilabs.com/index.php?title=KAmod_ESP32_ETH_POE_(PL)

Spis treści

Opis 1 ..
Podstawowe cechy i parametry 2 ...
Wyposażenie standardowe 3 ..
Schemat elektryczny 4 ..
Interfejs Ethernet 10 ...
Zasilanie metodą PoE 11 ...
Interfejs USB 12 ..
Przyciski resetowania i programowania 13 ...
Kontrolki sygnalizacyjne 14 ...
Złącze GPIO w standardzie RPi 15 ...
Funkcje zaawansowane 18 ..
Wymiary 19 ...
Program testowy 20 ..
Linki 26 ...

1

Opis
KAmod ESP32 ETH POE - Płytka ewaluacyjna z modułem ESP32-WROOM połączonym z interfejsem Ethernet
oraz układem zasilania PoE

Na płytce KAmod ESP32 ETH+POE znajduje się moduł ESP32-WROOM umożliwiający komunikację w sieci bezprzewodowej
Wi-Fi 2,4 GHz, jednak został połączony z interfejsem przewodowym Ethernet z typowym złączem RJ45. Programowanie
modułu ESP32 umożliwia konwerter USB-UART ze złączem USB-C. Płytkę uzupełnia układ zasilania PoE – Power over
Ethernet, dzięki czemu zasilanie modułu może być dostarczane z instalacji internetowej. Konstrukcja płytki odpowiada SBC
rodziny Raspberry Pi - ma wymiary 81x56 mm, a na charakterystycznym, 40-stykowym złączu zostały wyprowadzone
wszystkie istotne porty I/O oraz napięcia zasilające 5 V oraz 3,3 V, które mogą zasilać dodatkowe komponenty dołączone do
płytki.

https://kamami.pl/esp32/1191656-kamodesp32-ethpoe-plytka-ewaluacyjna-z-modulem-esp32-wroom-polaczonym-z-interfejsem-ethernet-oraz-ukladem-zasilania-poe-5906623496143.html
https://wiki.kamamilabs.com/index.php?title=File:KAmod_ESP32_ETH_PoE.jpg

2

Podstawowe cechy i parametry
Moduł ESP32-WROOM umożliwiający komunikację w sieci Wi-Fi w paśmie 2,4 GHz
Interfejs Ethernet na bazie układu LAN8742 (100/10 M; full/half duplex)
Zintegrowany konwerter UART-USB ze złączem USB-C umożliwiający programowanie układu ESP32
Układ zasilania PoE, kompatybilny ze standardem IEEE 802.3af/at Class 0
Dostarcza stabilizowanych napięć 5 V (+/-10%) oraz 3,3 V (+/-5%) o łącznym prądzie do 1,5 A
Zabezpieczenie przepięciowe, przeciążeniowe oraz termiczne
Na 40-stykowe złącze w standardzie Raspberry Pi zostały wyprowadzone wszystkie istotne porty I/O oraz napięcia
zasilające
Wymiary płytki: 85x56 mm, wysokość ok. 20 mm

3

Wyposażenie standardowe
Kod Opis

KAmodESP32 ETH+POE Zmontowany i uruchomiony moduł

4

Schemat elektryczny
Moduł ESP32

Elementy odpowiedzialne za funkcje resetu i programowania

https://wiki.kamamilabs.com/index.php?title=File:KAmodESP32-POE_sch1.png

5

Złącze GPIO

Diody sygnalizacyjne

https://wiki.kamamilabs.com/index.php?title=File:KAmodESP32-POE_sch2.png
https://wiki.kamamilabs.com/index.php?title=File:KAmodESP32-POE_sch_gpio.png

6

Interfejs Ethernet

Zasilanie PoE

https://wiki.kamamilabs.com/index.php?title=File:KAmodESP32-POE_sch3.png
https://wiki.kamamilabs.com/index.php?title=File:KAmodESP32-POE_sch4.png

7

https://wiki.kamamilabs.com/index.php?title=File:KAmodESP32-POE_sch5.png

8

Interfejs USB-UART

Źródło sygnału taktującego

Blok zasilania o napięciu 3,3 V

https://wiki.kamamilabs.com/index.php?title=File:KAmodESP32-POE_sch6.png
https://wiki.kamamilabs.com/index.php?title=File:KAmodESP32-POE_sch7.png

9

https://wiki.kamamilabs.com/index.php?title=File:KAmodESP32-POE_sch8.png

10

Interfejs Ethernet
Złącze Funkcja

J2 – ETH & PoE
(RJ45) • Umożliwia połączenie kablowe z siecią internetową

Na płytce KAmod ESP32 ETH+POE został zaimplementowany przewodowy interfejs Ethernet z klasycznym gniazdem RJ45
(J2). W roli drivera (PHY) interfejsu Ethernet zastosowano układ LAN8742, który jest kompatybilny z LAN8720 i jest
wspierany w środowisku Arduino. Może działać z prędkościami 100 Mb lub 10 Mb w trybie Full-Duplex lub Half-Duplex.

Driver Ethernet jest połączony z modułem ESP32 poprzez interfejs RMII (Reduced media-independent interface).
Przyporządkowanie sygnałów opisuje tabela:

Sygnał RMII Kierunek Wyprowadzenie modułu ESP32
TXD0 <- GPIO19
TXD1 <- GPIO22
TXEN <- GPIO21
RXD0 -> GPIO25
RXD1 -> GPIO26
CRS_DV -> GPIO27
MDIO <-> GPIO18
MDC <- GPIO23
REF_CLK -> GPIO0
RESET <- GPIO16

https://wiki.kamamilabs.com/index.php?title=File:KAmodESP32-POE_eth.png

11

Zasilanie metodą PoE
Złącze Funkcja

J2 – ETH & PoE
(RJ45) • Odbiera zasilanie z instalacji PoE

Poprzez złącze ETH & PoE (J2) może być dostarczane zasilanie do płytki ewaluacyjnej. Zastosowany kontroler zasilania PoE
bazuje na układzie MP8007, który jest kompatybilny ze standardami IEEE 802.3af - Powered Devices Type-1 oraz IEEE
802.3at - Powered Devices Type-2. Blok zasilania PoE jest skonfigurowany do pracy w klasie 0 (Class 0), która definiuje
pobór mocy urządzenia w zakresie 0,5...13 W.

Zasilanie metodą PoE jest możliwe tylko w kompatybilnej instalacji, zawierającej urządzenie PSE (Power Sourcing
Equipments) spełniające standard IEEE 802.3af/at np. router PoE. Prawidłowe działanie bloku zasilania PoE jest
sygnalizowane świeceniem diody POE (D4).

W czasie pracy bloku zasilania PoE, może być słyszalny szum lub cichy pisk – jest to naturalne zjawisko
wywołane działaniem przetwornicy impulsowej (SMPS).

Dźwięk jest najbardziej intensywny, gdy obciążenie bloku zasilania PoE jest niewielkie, natomiast dźwięk
cichnie, gdy obciążenie się zwiększa.

Przy właściwym zasilaniu płytki ewaluacyjnej KAmod ESP32 ETH+POE wytwarzane są napięcia stabilizowane ok. 5 V oraz 3,3
V, dostępne na złączy szpilkowym J1. Mogą posłużyć do zasilania innych modułów dołączonych do płytki ewaluacyjnej,
należy jednak pamiętać, aby sumaryczny prąd nie powinien przekraczać 1,5 A.

W instalacji PoE występują napięcia o wartościach sięgających aż 60 V. Wszelkie czynności wykonywane w takich
instalacjach z użyciem płytki ewaluacyjnej KAmod ESP32 ETH+POE należy wykonywać ze szczególną ostrożnością i z
zachowaniem zasad bezpieczeństwa.

https://wiki.kamamilabs.com/index.php?title=File:KAmodESP32-POE_poe.png

12

Interfejs USB
Złącze Funkcja

P1 – COM&POW
(USB-C)

• Realizuje funkcję konwertera USB-UART
• Umożliwia programowanie modułu ESP32
• Jest alternatywnym wejściem zasilania

Złącze P1 typu USB-C jest połączone z kontrolerem typu CH340, który realizuje funkcje konwertera USB-UART. Interfejs UART
może być używany w docelowej aplikacji, ale służy także do programowania modułu ESP32. Proces programowania może
przebiegać całkowicie automatycznie, ponieważ kontroler CH340 steruje kluczowymi wyprowadzeniami modułu ESP32
(GPIO0 – Boot Select oraz EN - Chip Power-up).

Połączenia sygnałów pomiędzy CH340 i ESP32 są następujące:

Sygnał kontrolera CH340 Wyprowadzenie modułu ESP32
TXD (wyjście danych) GPIO03 (UART0 RXD)
RXD (wejście danych) GPIO01 (UART0 TXD)
DTR (wyście kontroli transmisji) EN (Chip Power-up)
RTS (wyjście kontroli transmisji) GPIO0 (Boot Select)

Do linii TXD jest dołączona dioda led oznaczona USB (D3), która sygnalizuje odbieranie danych z interfejsu USB. W
przypadku użycia w docelowej aplikacji konwertera USB-UART należy zadbać o to, aby linie DTR oraz RTS pozostały
nieobsługiwane (Handshaking: None).

Złącze USB-C może służyć jako alternatywne wejście zasilania dla płytki KAmod ESP32 ETH+POE, jednak wtedy parametry
obwodów zasilania nie będą spełnione. Napięcie na linii 5 V, będzie niższe i będzie wynosiło ok. 4,5 V; napięcie na linii 3,3 V
nie powinno się zmienić; wydajność prądowa napięć 5 V oraz 3,3 V może być dużo niższa i będzie zależała od zastosowanego
zasilania na złączu USB-C.

https://wiki.kamamilabs.com/index.php?title=File:KAmodESP32-POE_usb.png

13

Przyciski resetowania i programowania
Komponent Funkcja

Przycisk SW1 – PROG • Uruchamia tryb programowania poprzez UART (tylko w momencie restartu modułu ESP32)
Przycisk SW2 – RESET • Powoduje restart modułu ESP32 oraz kontrolera interfejsu Ethernet

Przycisk RESET umożliwia wykonanie restartu modułu ESP32 oraz, jednocześnie kontrolera interfejsu Ethernet. Jest
połączony z linią EN (Chip Power-up) modułu ESP32.

Przycisk PROG pozwala wprowadzić moduł ESP32 w tryb programowania. Należy wtedy nacisnąć przycisk RESET, następnie,
trzymając wciśnięty RESET, przytrzymać przycisk PROG i wtedy zwolnić RESET, jednocześnie trzymając jeszcze przez chwilę
wciśnięty PROG. Funkcjonalność ta może być przydatna, gdy z jakiegoś powodu tryb programowania nie będzie uruchamiany
automatycznie poprzez konwerter USB-UART.

https://wiki.kamamilabs.com/index.php?title=File:KAmodESP32-POE_res.png

14

Kontrolki sygnalizacyjne
Komponent Funkcja
D3 – USB • Miganie diody D3 oznacza przesyłanie danych z USB do modułu ESP32
D4 – POE • Świecenie diody D4 oznacza prawidłowe działanie modułu zasilania PoE
D5 – POW • Świecenie diody D5 oznacza obecność głównego napięcia zasilającego - napięcia 3,3 V

D6 – IO-2 • Dioda D6 jest dołączona do wyprowadzenia GPIO2 modułu ESP32 i jej świecenie może być sterowane
programowo

Na płytce KAmod ESP32 ETH+POE znajdują się 4 diody LED, które sygnalizują działanie różnych komponentów – zgodnie z
powyższą tabelą.

Dioda D6 (LED IO-2) jest dołączona do wyprowadzenia GPIO2 modułu ESP32. Jej zaświecenie wymaga programowego
ustawienia stanu wysokiego na wyprowadzeniu GPIO2.

Dodatkowe dwie diody sygnalizacyjne znajdują się na złączu J2. Dioda po lewej stronie (POWER) sygnalizuje obecność
głównego napięcia zasilającego - napięcia 3,3 V. Dioda po prawej stronie (LINK) miganiem sygnalizuje aktywność interfejsu
Ethernet.

https://wiki.kamamilabs.com/index.php?title=File:KAmodESP32-POE_led.png

15

Złącze GPIO w standardzie RPi
Złącze Funkcja

J1 – Goldpin 2x20
• Złącze w standardzie Raspberry Pi
• Wyprowadzone niektóre porty GPIO modułu ESP32
• Wyprowadzone linie zasilania 5 V, 3,3 V, GND

Złącze GPIO (J1) w standardzie Raspberry Pi zawiera 40 szpilek, do których doprowadzone są linie zasilania 5 V, 3,3 V, GND
oraz niektóre wyprowadzenia GPIO modułu ESP32. Wyprowadzenia interfejsów UART (TXD, RXD), I2C (SDA, SCL) oraz SPI
(MOSI, MISO, SCLK, CS0) zostały rozmieszczone tak, jak ma to miejsce w płytkach rodziny Raspberry Pi.

Dokładny opis wyprowadzeń oraz ich funkcje pokazuje rysunek i tabela poniżej:

Opis wyprowadzeń został również naniesiony na spodzie płytki KAmod ESP32 ETH+POE:

https://wiki.kamamilabs.com/index.php?title=File:KAmodESP32-POE_gpio.png

16

Uwagi dotyczące sygnałów wyprowadzonych na złącze GPIO

Porty GPIO 34, 35, 36 i 39 modułu ESP32 mogą pracować wyłącznie jako wejścia cyfrowe lub analogowe –

https://wiki.kamamilabs.com/index.php?title=File:KAmodESP32-POE_gpio2.png
https://wiki.kamamilabs.com/index.php?title=File:KAmod_ESP32_PoE_02.jpg

17

zostały one oznaczone symbolem IN.
Porty GPIO 34 i 35 zostały wyposażone w rezystory podciągające pull-up 10k.
Porty GPIO 36 i 39 zostały wyposażone w dzielniki napięcia (100k/10k), dzięki czemu można do nich dołączyć
napięcie o maksymalnej wartości 35 V.
Porty GPIO 32 i 33 zostały dostosowane do funkcjonalności magistrali I2C i zawierają rezystory podciągające
pull-up 2,2k.
Porty GPIO 1 oraz GPIO 3 pełnią funkcję interfejsu UART i zostały połączone do modułu konwertera USB-
UART oraz równolegle do złącza GPIO J1. Interfejs UART wysyła/odczytuje dane do/z złącza GPIO J2 oraz
konwertera USB-UART jednocześnie.
Porty GPIO5, GPIO12 oraz GPIO15 konfigurują pewne parametry modułu ESP32. Ich stan jest odczytywany
w momencie uruchomienia (restartu) modułu ESP32, dlatego zostały wyposażone w rezystory
podciągające:GPIO5 – pull-up, GPIO12 – pull-down, GPIO15 – pull-down. Należy zadbać o to, aby poziom
logiczny na tych wyprowadzeniach w momencie uruchomienia (restartu), odpowiadał stanowi wymuszonemu
rezystorami pull-up/down.
Port GPIO16 został połączony z sygnałem zerującym driver Ethernet – układ LAN8742. Stan niski na tym
wyprowadzeniu blokuje działanie interfejsu Ethernet.

18

Funkcje zaawansowane
Komponent Funkcja

JP1 – ETH RST IO16 • Zworka SMD, fabrycznie zwarta, stanowi połączenie portu GPIO16 z sygnałem zerowania drivera
Ethernet

JP3 – DBG INFO EN • Zworka SMD, pozwala włączyć wysyłanie komunikatów systemowych – Debugging Log, poprzez
interfejs UART (USB)

Zworki JP1 oraz JP3 znajdują się na dolnej stronie płytki ewaluacyjnej (bottom).

JP1 – ETH RST IO16 jest fabrycznie zwarta (ścieżka miedzi pomiędzy padami) i zapewnia połączenie pomiędzy portem
GPIO16 modułu ESP32 i wejściem RESET drivera interfejsu Ethernet. Aby odłączyć port GPIO16 od sygnału zerowania drivera
Ethernet należy przeciąć ostrym narzędziem powierzchnię płytki – tak jak wskazuje czerwona linia przy JP1 na poniższym
rysunku. Ponowne połączenie sygnału zerowania jest możliwe poprzez naniesienie kropelki spoiwa lutowniczego, które
połączy oba pady zworki JP1.

JP3 – DBG INFO EN jest fabrycznie połączona pomiędzy padem środkowym a padem numer 1 (masa zasilania) i powoduje
wyciszenie komunikatów systemowych tzw. Debugging Log. Aby włączyć wysyłanie komunikatów systemowych należy
przeciąć ostrym narzędziem powierzchnię płytki tak, jak wskazuje czerwona linia przy JP3 na poniższym rysunku oraz nanieść
kroplę spoiwa lutowniczego, które połączy pady po przeciwnej stronie, pady 2-3 (do napięcia 3,3 V). Nie wolno połączyć
padów 2-3, bez wcześniejszego rozdzielenia padów 1-2.

https://wiki.kamamilabs.com/index.php?title=File:KAmodESP32-POE_func.png

19

Wymiary
Wymiary płytki KAmod ESP32 ETH+POE to 85x56 mm. Wysokość maksymalna wynosi ok. 20 mm. Na płytce znajdują się 4
otwory montażowe o średnicy 3 mm rozmieszczone podobnie jak na płytkach z rodziny Raspberry Pi.

https://wiki.kamamilabs.com/index.php?title=File:KAmodESP32-POE_wym.png

20

Program testowy
Kod programu testowego znajduje się poniżej, można go skompilować w środowisku Arduino.

Zawsze aktualna, najnowsza wersja oprogramowania znajduje się w repozytorium na portalu GitHub

//Ino Board: esp32 -> ESP32-WROOM_DA-Module
#include <ETH.h>
#include <WiFi.h>
/*
 * ETH_CLOCK_GPIO0_IN - default: external clock from crystal oscillator
 * ETH_CLOCK_GPIO0_OUT - 50MHz clock from internal APLL on GPIO0
 * ETH_CLOCK_GPIO16_OUT - 50MHz clock from internal APLL on GPIO16
 * ETH_CLOCK_GPIO17_OUT - 50MHz clock from internal APLL inverted on GPIO17
*/
#ifdef ETH_CLK_MODE
 #undef ETH_CLK_MODE
#endif
#define ETH_CLK_MODE ETH_CLOCK_GPIO0_IN
// Pin# of the enable signal for the external crystal oscillator (-1 to disable for internal
APLL source)
#define ETH_POWER_PIN -1
// Type of the Ethernet PHY (LAN8720 or TLK110)
#define ETH_TYPE ETH_PHY_LAN8720
// I²C-address of Ethernet PHY (0 or 1 for LAN8720, 31 for TLK110)
#define ETH_ADDR 0
// Pin# of the I²C clock signal for the Ethernet PHY
#define ETH_MDC_PIN 23
// Pin# of the I²C IO signal for the Ethernet PHY
#define ETH_MDIO_PIN 18
// Mode select PINs
#define ETH_RXD0_MODE0 25
#define ETH_RXD1_MODE1 26
#define ETH_CRS_MODE2 27

#define ETH_RESET 16

#define LED_PIN 2

static bool eth_connected = false;

WiFiServer server(80);

// Select the IP address according to your local network
IPAddress myIP(10, 1, 0, 182);
IPAddress myGW(10, 1, 0, 252);
IPAddress mySN(255, 255, 0, 0);
IPAddress myDNS(8, 8, 8, 8);

void myEvent(WiFiEvent_t event) {
 switch (event) {
 case ARDUINO_EVENT_ETH_START:
 Serial.println("ETH Started");
 ETH.setHostname("esp32-ethernet");
 break;

https://github.com/KAMAMI-Labs/KAmodESP32-ETH-POE/tree/main

21

 case ARDUINO_EVENT_ETH_CONNECTED:
 Serial.println("ETH Connected");
 break;
 case ARDUINO_EVENT_ETH_GOT_IP:
 //Serial.println("ETH Got IP");
 //Serial.println(ETH);
 Serial.print("ETH MAC: ");
 Serial.print(ETH.macAddress());
 Serial.print(", IPv4: ");
 Serial.print(ETH.localIP());
 if (ETH.fullDuplex()) {
 Serial.print(", FULL_DUPLEX");
 }
 Serial.print(", ");
 Serial.print(ETH.linkSpeed());
 Serial.println("Mbps");
 eth_connected = true;
 break;
 case ARDUINO_EVENT_ETH_LOST_IP:
 Serial.println("ETH Lost IP");
 eth_connected = false;
 break;
 case ARDUINO_EVENT_ETH_DISCONNECTED:
 Serial.println("ETH Disconnected");
 eth_connected = false;
 break;
 case ARDUINO_EVENT_ETH_STOP:
 Serial.println("ETH Stopped");
 eth_connected = false;
 break;
 default:
 break;
 }
}

void setup() {
 //ETH Reset assert
 pinMode(ETH_RESET, OUTPUT);
 digitalWrite(ETH_RESET, LOW);
 pinMode(ETH_RXD0_MODE0, INPUT_PULLUP);
 pinMode(ETH_RXD1_MODE1, INPUT_PULLUP);
 pinMode(ETH_CRS_MODE2, INPUT_PULLUP);

 //Serial - start
 Serial.begin(115200);
 pinMode(LED_PIN, OUTPUT);
 for(int i=0; i<7; i++){
 digitalWrite(LED_PIN, HIGH);
 delay(200);
 digitalWrite(LED_PIN, LOW);
 delay(200);
 }
 //ETH Reset deassert
 digitalWrite(ETH_RESET, HIGH);
 delay(50);

 WiFi.onEvent(myEvent);
 ETH.setAutoNegotiation(false);
 ETH.setFullDuplex(true);

22

 ETH.setLinkSpeed(true);
 ETH.begin(ETH_TYPE, ETH_ADDR,
 ETH_MDC_PIN, ETH_MDIO_PIN,
 ETH_POWER_PIN, ETH_CLK_MODE);
 //ETH.config(myIP, myGW, mySN, myDNS);

 while (!ETH.connected()){}
 server.begin();
}

void loop() {
 // listen for incoming clients
 WiFiClient client = server.available();

 if (client) {
 Serial.println("********New Client********");

 String currentLine = "";

 while (client.connected()) {
 if (client.available()) {
 char c = client.read();
 //Serial.write(c);
 if (c == '\n') {

 if (currentLine.length() == 0) {
 client.println("HTTP/1.1 200 OK");
 client.println("Content-type:text/html");
 client.println();
 client.print("<H2>Click here to turn ON the LED.
");
 client.print("Click here to turn OFF the LED.
");
 client.print("Click here to write to Serial
(USB).
</H2>");
 client.println();
 break;
 } else {
 currentLine = "";
 }
 } else if (c != '\r') {
 currentLine += c;
 }

 //if (currentLine.endsWith("GET /H")) {
 if (currentLine.indexOf("GET /H") >= 0) {
 digitalWrite(LED_PIN, HIGH);
 }
 //if (currentLine.endsWith("GET /L")) {
 if (currentLine.indexOf("GET /L") >= 0) {
 digitalWrite(LED_PIN, LOW);
 }
 if (currentLine.endsWith("GET /SEND")) {
 Serial.println("\r\nHELLO - you send message via Serial(USB)");
 }
 }
 }

 delay(10);
 client.stop();
 Serial.println("********Client Disconnected********");

23

 }
}

Program testowy konfiguruje port GPIO2 jako wyjście sterujące diodą LED (D6) i sygnalizuje rozpoczęcie działania kilkoma
mignięciami. Następnie uruchamia sprzętowy interfejs UART i konfiguruje go do pracy jako interfejs szeregowy połączony do
konwertera UART-USB. Dzięki temu można monitorować działanie płytki w dowolnym programie typu terminal (Serial
Monitor).

#define LED_PIN 2
pinMode(LED_PIN, OUTPUT);
for(int i=0; i<5; i++){
digitalWrite(LED_PIN, HIGH);
delay(200);
digitalWrite(LED_PIN, LOW);
delay(200);
}
//Serial - start
Serial.begin(115200);

Przygotowanie do pracy drivera interfejsu Ethernet – układu LAN8742, wymaga dołączenia biblioteki ETH.h oraz
zdefiniowania funkcji wyprowadzeń. Układ LAN8742 jest kompatybilny z układem LAN8720, który z kolei jest wspierany w
środowisku Arduino.

#include <ETH.h>
/*
* ETH_CLOCK_GPIO0_IN - default: external clock from crystal oscillator
* ETH_CLOCK_GPIO0_OUT - 50MHz clock from internal APLL on GPIO0
* ETH_CLOCK_GPIO16_OUT - 50MHz clock from internal APLL on GPIO16
* ETH_CLOCK_GPIO17_OUT - 50MHz clock from internal APLL inverted on GPIO17
*/
#ifdef ETH_CLK_MODE
#undef ETH_CLK_MODE
#endif
#define ETH_CLK_MODE ETH_CLOCK_GPIO0_IN
// Pin# of the enable signal for the external crystal oscillator (-1 to disable for internal
APLL source)
#define ETH_POWER_PIN -1
// Type of the Ethernet PHY (LAN8720 or TLK110)
#define ETH_TYPE ETH_PHY_LAN8720
// I²C-address of Ethernet PHY (0 or 1 for LAN8720, 31 for TLK110)
#define ETH_ADDR 0
// Pin# of the I²C clock signal for the Ethernet PHY
#define ETH_MDC_PIN 23
// Pin# of the I²C IO signal for the Ethernet PHY
#define ETH_MDIO_PIN 18
#define ETH_RESET 16
//ETH Reset assert
pinMode(ETH_RESET, OUTPUT);
digitalWrite(ETH_RESET, LOW);
...
//ETH Reset deassert
digitalWrite(ETH_RESET, HIGH);
delay(200);

24

Teraz można uruchomić interfejs oraz serwer www:

WiFiServer server(80);
ETH.begin(ETH_TYPE, ETH_ADDR,
ETH_MDC_PIN, ETH_MDIO_PIN,
ETH_POWER_PIN, ETH_CLK_MODE);
...
while (!ETH.connected()){}
server.begin();

Po uruchomieniu programu testowego zostanie uruchomiony serwer www z bardzo prostą stroną internetową, która
umożliwia sterowanie diodą LED D6 oraz wysłanie komunikatu poprzez port szeregowy:

Adres IP, który zostanie przydzielony serwerowi www w sieci LAN można odczytać z komunikatów wysyłanych przez port
szeregowy:

Adres IP można również określić w programie, należy wtedy określić cztery parametry:

IPAddress myIP(10, 1, 0, 182);
IPAddress myGW(10, 1, 0, 252);
IPAddress mySN(255, 255, 0, 0);
IPAddress myDNS(8, 8, 8, 8);

a następnie wpisać polecenie:

https://wiki.kamamilabs.com/index.php?title=File:KAmodESP32-POE_www.jpg
https://wiki.kamamilabs.com/index.php?title=File:KAmodESP32-POE_serial_monitor.jpg

25

ETH.config(myIP, myGW, mySN, myDNS);

przed linią:

server.begin();

26

Linki
Karta katalogowa układu LAN8742
Karta katalogowa układu MP8007
Karta katalogowa układu ESP32
Karta katalogowa układu CH340
Karta katalogowa układu ST1S10
Program testowy Arduino

https://wiki.kamamilabs.com/images/f/f4/DS_LAN8742_00001989A.pdf
https://wiki.kamamilabs.com/images/3/30/MP8007.pdf
https://download.kamami.pl/p1179653-esp32-wroom-32d_esp32-wroom-32u_datasheet_en.pdf
https://wiki.kamamilabs.com/images/2/29/CH340DS1.PDF
https://download.kamami.pl/p103134-st1s10.pdf
https://wiki.kamamilabs.com/images/5/5d/Ardu_kamod_esp32_poe_lib_eth.zip

BTC Korporacja
05-120 Legionowo
ul. Lwowska 5
tel.: (22) 767-36-20
faks: (22) 767-36-33
e-mail:
sprzedaz@kamami.pl
https://kamami.pl

Zastrzegamy prawo do wprowadzania zmian bez uprzedzenia.
Oferowane przez nas płytki drukowane mogą się różnić od prezentowanej w dokumentacji, przy czym zmianom nie ulegają
jej właściwości użytkowe.
BTC Korporacja gwarantuje zgodność produktu ze specyfikacją.
BTC Korporacja nie ponosi odpowiedzialności za jakiekolwiek szkody powstałe bezpośrednio lub pośrednio w wyniku użycia
lub nieprawidłowego działania produktu.
BTC Korporacja zastrzega sobie prawo do modyfikacji niniejszej dokumentacji bez uprzedzenia.

https://kamami.pl

